Parity Violation: Past, Present, and Future

M.J. Ramsey-Musolf

NSAC Long Range Plan

- What is the structure of the nucleon?
- What is the structure of nucleonic matter?
- What are the properties of hot nuclear matter?
- What is the nuclear microphysics of the universe?
- What is to be the new Standard Model?

NSAC Long Range Plan

- What is the structure of the nucleon?
- What is the structure of nucleonic matter?
- What are the properties of hot nuclear matter?
- What is the nuclear microphysics of the universe?
- What is to be the new Standard Model?

Parity-Violating Electron Scattering

Outline

- PVES and Nucleon Structure
- PVES and Nucleonic Matter
- PVES and the New Standard Model

Parity-Violating Asymmetry

$$A_{LR} = \frac{N_{+} - N_{-}}{N_{+} + N_{-}} = \frac{2 \operatorname{Re} A_{PV} A_{PC}^{*}}{|A_{PC}|^{2}} G^{P}_{W}$$

$$= \frac{G_{F} |Q^{2}|}{4\sqrt{2}\pi\alpha} \left[Q^{P}_{W} + F(Q^{2}, \theta) \right]$$

MIT-Bates

Mainz

Jefferson Lab

SLAC

Deep Inelastic eD (1970's) PV Moller Scattering (now) Deep Inelastic eD (2005?)

Elastic e ¹²C (1970's - 1990) Elastic ep, QE eD (1990's - now)

Parity Violating Electron Scattering

QE e ⁹Be (1980's) Elastic ep (1990's - now)

Elastic ep: HAPPEX, G0 (1990's - now)

Elastic e ⁴He: HAPPEX (2003)

Elastic e ²⁰⁸Pb: PREX

QE eD, inelastic ep: G0 (2003-2005?)

Elastic ep: Q-Weak (2006-2008)

Moller, DIS eD (post-upgrade?)

Jefferson Lab

PVES and Nucleon Structure

What are the relevant degrees of freedom for describing the properties of hadrons and why?

Constituent quarks (QM)

 Q^P , μ^P

Current quarks (QCD)

 $F_{2}^{P}(x)$

PVES and Nucleon Structure

Why does the constituent Quark Model work so well?

- Sea quarks and gluons are "inert" at low energies
- Sea quark and gluon effects are hidden in parameters and effective degrees of freedom of QM (Isgur)
- Sea quark and gluon effects are hidden by a "conspiracy" of cancellations (Isgur, Jaffe, R-M)
- Sea quark and gluon effects depend on C properties of operator (Ji)

PVES and Nucleon Structure

What are the relevant degrees of freedom for describing the properties of hadrons and why?

Strange quarks in the nucleon:

- Sea quarks
- $m_s \sim \Lambda_{QCD}$
- 20% of nucleon mass, possibly -10% of spin

What role in electromagnetic structure?

We can uncover the sea with G^P_w

Light QCD quarks:

Heavy QCD quarks:

$$u m_u \sim 5 \text{ MeV}$$

c
$$m_c \sim 1500 \text{ MeV}$$

d
$$m_d \sim 10 \text{ MeV}$$

b
$$m_b \sim 4500 \text{ MeV}$$

s
$$m_s \sim 150 \text{ MeV}$$

t
$$m_t \sim 175,000 \text{ MeV}$$

Effects in G^P suppressed by

$$(\Lambda_{QCD}/m_q)^4 < 10^{-4}$$
 $\Lambda_{QCD} \sim 150 \; MeV$

$$\Lambda_{\rm QCD} \sim 150 \; {\rm MeV}$$

We can uncover the sea with G^P_W

Light QCD quarks:

u

 $m_{\rm u} \sim 5~{\rm MeV}$

d $m_d \sim 10 \text{ MeV}$

s $m_s \sim 150 \text{ MeV}$

Heavy QCD quarks:

c $m_c \sim 1500 \text{ MeV}$

b $m_b \sim 4500 \text{ MeV}$

t $m_t \sim 175,000 \text{ MeV}$

 $m_s \sim \Lambda_{QCD}$: No suppression

not necessarily negligible

We can uncover the sea with GPw

Light QCD quarks:

 $u m_{ij} \sim 5 \text{ MeV}$

d $m_d \sim 10 \text{ MeV}$

s $m_s \sim 150 \text{ MeV}$

Lives only in the sea

Heavy QCD quarks:

c $m_c \sim 1500 \text{ MeV}$

b $m_b \sim 4500 \text{ MeV}$

t $m_t \sim 175,000 \text{ MeV}$

Parity-Violating Electron Scattering

Kaplan and Manohar McKeown

Neutral Weak Form Factors

$$G^{P} = Q^{u} G^{u} + Q^{d} G^{d} + Q^{s} G^{s}$$
 \longrightarrow γ

$$G^{n} = Q^{u} G^{d} + Q^{d} G^{u} + Q^{s} G^{s}$$
 \longrightarrow γ , isospin

$$G^{P}_{W} = Q^{u}_{W} G^{u} + Q^{d}_{W} G^{d} + Q^{s}_{W} G^{s} \longrightarrow Z^{0}$$

$$\downarrow$$
SAMPLE (MIT-Bates), HAPPEX
(JLab), PVA4 (Mainz), G0 (JLab)
$$G^{u}, G^{d}, G^{s}$$

Parity-Violating Electron Scattering

Separating
$$G^{E}_{W}$$
, G^{M}_{W} , G^{A}_{W}

$$G^{M}_{W}$$
, G^{A}_{W} SAMPLE

$$G^{M}_{W}$$
, G^{E}_{W} HAPPEX, PVA4

Published results: SAMPLE, HAPPEX

Axial Radiative Corrections

Nucleon Green's Fn: Analogous effects in neutron β -decay, PC electron scattering...

"Anapole" Effects

Can't account for a large reduction in Ge_A

Nuclear PV Effects

Carlson, Paris, Schiavilla Liu, Prezeau, Ramsey-Musolf

SAMPLE Results

R. Hasty et al., Science 290, 2117 (2000).

at $Q^2=0.1 (\text{GeV/c})^2$

• s-quarks contribute less than 5% (1σ) to the proton's magnetic moment.

200 MeV update 2003:

Improved EM radiative corr. Improved acceptance model Correction for π background

125 MeV:

no π background similar sensitivity to $G_A^e(T=1)$

Radiative corrections

E. Beise, U Maryland

Strange Quark Form Factors

Theoretical Challenge:

- Strange quarks don't appear in Quark
 Model picture of the nucleon
- Perturbation theory may not apply

• Symmetry is impotent

$$J_{\mu}^{s} = J_{\mu}^{B} + 2 J_{\mu}^{EM, I=0}$$

Theoretical predictions

$$\mu_s \equiv G_M^s (Q^2 = 0)$$

What χ PT can (cannot) say

Strange magnetism as an illustration

Ito, R-M
Hemmert,
Meissner, Kubis

$$G_{M}^{s}(q^{s}) = \mu_{s} + \frac{1}{6}q^{2}r_{s,M}^{2} + \cdots$$

$$\mu_{s} = \left(2M_{N}/\Lambda_{\chi}\right)b_{s} + \cdots$$

Unknown lowenergy constant (incalculable) Kaon loop contributions (calculable)

What χ PT can (cannot) say

Strange magnetism as an illustration

$$G_{M}^{s}(q^{s}) = \mu_{s} + \frac{1}{6}q^{2}r_{s,M}^{2} + \cdots$$

$$r_{s,M}^{2} = -\frac{6}{\Lambda_{\chi}} \left\{ \left(\frac{2M_{N}}{\Lambda_{\chi}} \right) b_{s}^{r} \right\}$$

$$+ \frac{1}{18} (5D^{2} - 6DF + 9F^{2}) \left(\frac{\pi M_{N}}{m_{K}} + 7 \ln \frac{m_{K}}{\mu} \right) + \cdots \right\}$$
LO, parameter free NLO, cancellation

Slope of
$$G_{M}^{s}$$

$$r_{s,M}^{2} = \frac{6}{\pi} \int_{9m_{\pi}^{2}}^{\infty} dt \frac{\text{Im}G_{M}^{s}(t)}{t^{2}}$$

Strong interaction scattering amplitudes

$$e+e^- \longrightarrow K^+K^-$$
, etc.

Jaffe Hammer, Drechsel, R-M

Hammer & R-M

Perturbation theory (1-loop)

Hammer & R-M

$$r_{s,M}^2 = \frac{6}{\pi} \int_{4m_K^2}^{\infty} at \frac{\text{Im}G_M(t)}{t^2}$$

Can't do the whole integral

- Are there higher mass excitations of s s pairs?
- Do they enhance or cancel low-lying excitations?

Experiment will give an answer

PVES and **Nucleonic Matter**

What is the equation of state of dense nucleonic matter?

We know a lot about the protons, but lack critical information about the neutrons

PVES and Nucleonic Matter

The Z⁰ boson probes neutron properties

Donnelly, Dubach, Sick

$$Q_{W} = Z(1 - 4 \sin^{2}\theta_{W}) N$$

$$\sim 0.1$$

PREX (Hall A): ²⁰⁸Pb

Horowitz, Pollock, Souder, & Michels

PVES and Neutron Stars

Neutron star

Crust thickness decreases with P_n

Horowitz & Piekarewicz

PVES and Neutron Stars

Neutron star properties are connected to densitydependence of symmetry energy Horowitz & Piekarewicz

PREX probes R_n - R_p a meter of E (ρ)

We believe in the Standard Model, but it leaves many unanswered questions

- What were the symmetries of the early Universe and how were they broken?
- What is dark matter?
- Why is there more matter than anti-matter?

Neutral current mixing depends on electroweak symmetry

$$\cdot J_{\mu}^{WNC} = J_{\mu}^{0} + 4 Q \sin^{2}\theta_{W} J_{\mu}^{EM}$$

$$\sin^2 \theta_W = \frac{g_Y^2}{g^2 + g_Y^2}$$

$$SU(2)_L \qquad U(1)_Y$$

Weak mixing also depends on scale

$sin^2\theta_W(\mu)$ depends on particle spectrum

$sin^2\theta_W(\mu)$ depends on particle spectrum

$sin^2\theta_W(\mu)$ depends on particle spectrum

New Physics & Parity Violation

$$Q^{e}_{W} = -1 + 4 \left(\sin^{2}\theta_{W} \right)$$
 $Q^{P}_{W} = 1 - 4 \left(\sin^{2}\theta_{W} \right)$
 $Q^{Cs}_{W} = Z(1 - 4 \left(\sin^{2}\theta_{W} \right) - N$

 $\sin^2\theta_{\rm W}$ is scale-dependent

Weak mixing also depends on scale

Additional symmetries in the early universe can change scale-dependence

Supersymmetry

$$\tilde{W}, \tilde{Z}, \tilde{\gamma}, \tilde{H}_{u,d} \Rightarrow \tilde{\chi}^{\pm}, \tilde{\chi}^{0}$$
 Charginos, neutralinos

Electroweak & strong couplings unify with supersymemtry

SUSY will change $sin^2\theta_w(\mu)$ evolution

SUSY will change $sin^2\theta_w(\mu)$ evolution

Kurylov, R-M, Su

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

3000 randomly chosen SUSY parameters but effects are correlated

Can SUSY explain dark matter?

Expansion

Rotation curves

Cosmic microwave background

SUSY provides a DM candidate

- •Stable, lightest SUSY particle if baryon (B) and lepton (L) numbers are conserved
- •However, B and L need not be conserved in SUSY, leading to neutralino decay

e.g.
$$\tilde{\chi}^0 \rightarrow e^+ \mu^- \nu_e$$

B and/or L Violation in SUSY can also affect low-energy weak interactions

 μ -decay, β-decay,...

Q^P_W in PV electron scattering

Comparing Q_w^e and Q_w^p

Kurylov, R-M, Su

No SUSY dark matter

SUSY loops

 χ^0 -> $e\mu^+\nu$ QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

v is Majorana

Comparing Q_w^e and Q_w^p

Can be a *diagnostic tool* to determine whether or not

- the early Universe was *supersymmetric*
- there is *supersymmetric* dark matter

The weak charges can serve a similar diagnostic purpose for other models for high energy symmetries, such as *left-right* symmetry, grand unified theories with extra U(1) groups, etc.

Weak mixing also depends on scale

Kurylov, R-M, Su

Interpretation of precision measurements

How well do we now the SM predictions? Some QCD issues

Proton Weak Charge

$$A_{LR} = \frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \left[Q_W^p + F^p(Q^2, \theta) \right]$$
Weak charge
$$Q^2 = 0.03 \text{ (GeV/c)}^2$$
Form factors: MIT, JLab, Mainz
$$Q^2 > 0.1 \text{ (GeV/c)}^2$$

Interpretation of precision measurements

How well do we now the SM predictions? Some QCD issues

Proton Weak Charge

$$A_{LR} = \frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \left[Q_W^p + F^p(Q^2, \theta) \right]$$

$$F^{P}(Q^{2}, \theta \to 0) \sim Q^{2}$$

Use χPT to extrapolate in small Q² domain and current PV experiments to determine LEC's

Summary

- Parity-violating electron scattering provides us with a well-understood tool for studying several questions at the forefront of nuclear physics, particle physics, and astrophysics:
 - Are sea quarks relevant at low-energies?
 - How compressible is neutron-rich matter
 - What are the symmetries of the early Universe?
- Jefferson Lab is *the* parity violation facility
- We have much to look forward to in the coming years

QCD Effects in QwP

Box graphs

$$\delta Q_W \sim 26\%$$

$$\delta Q_W \sim 3\%$$

$$k_{loop} \sim M_W : pQCD$$

$$\delta Q_{W} \sim 6\%$$

$$\Lambda_{QCD} < k_{loop} < M_W$$
: non-perturbative

Box graphs, cont'd.

Short-distance correction: OPE

$$\delta Q_W^p(QCD) \sim -0.7\%$$
 WW $\delta Q_W^p(QCD) \sim -0.08\%$ ZZ

Box graphs, cont'd.

Fortuitous suppression factor: box + crossed ~ $\varepsilon^{\mu\nu\alpha\beta} k_{\nu} J_{\alpha}^{\gamma} J_{\beta}^{Z} \sim A^{\mu} \longrightarrow \mathcal{G}_{v}^{e} = (-1+4\sin^{2}\theta_{w})$

Neutron β**-decay**

$$\frac{\overline{v}_{e}}{V} = \frac{W}{\sqrt{2}} \frac{\partial}{\partial x} \left[\ln \left(\frac{M_{Z}^{2}}{\Lambda^{2}} \right) + C_{yW}(\Lambda) \right]$$

$$|\delta C_{\gamma W}| < 2$$
 to avoid exacerbating CKM non-unitarity

$$|\delta C_{\gamma Z}| < 2 \implies \delta Q_W^p < 1.5\%$$